Monday, February 18, 2008

Complementary Alternative Cancer Therapies-1

The Need for Complementary Alternative Cancer Therapies

Mainstream medical treatment of cancer revolves around surgery, chemotherapy, and radiation therapy, used either alone or in combination (Isobe T et al 2005; Ostoros G et al 2005). Chemotherapy and radiation therapy cannot discriminate between cancer cells and healthy cells; thus, they damage both types of cells and cause serious and often debilitating side effects, frequently forcing patients to abandon treatment (Ettinger DS 2005; Giraud P et al 2004; Munden RF et al 2005). Therefore, it is not surprising that many cancer patients now opt to complement conventional treatments with alternative therapies that may not only temper the adverse side effects of conventional cancer therapy, but also improve its effectiveness via independent anti-cancer effects.

What Are Complementary Alternative Therapies?Complementary alternative medical therapies (CAM) is a collective term for an array of remedies that lie outside what is traditionally considered conventional medical treatment for cancer. These include the use of herbal, vitamin, and nutritional supplements, as well as physical and psychological interventions such as exercise, relaxation, massage, prayer, hypnotherapy, and acupuncture (Deng G et al 2005; Hann D et al 2005; Molassiotis A et al 2005). The use of CAM as a component of integrated cancer treatment regimens may help patients reduce the side effects associated with conventional cancer treatments, alleviate symptoms, enhance immune function, and provide greater quality of (and control over) life (Deng G et al 2004, 2005).

The use of CAM is popular among cancer patients undergoing conventional treatment (Hann D et al 2005; Molassiotis A et al 2005). Over 72 million patients used complementary alternative therapies in the past year (Tindle HA et al 2005) to help control their disease. In the United States, 91 percent of cancer patients implemented at least one form of CAM in addition to undergoing conventional cancer treatment (Yates JS et al 2005). The most popular forms of CAM were exercise, relaxation, and prayer (Yates JS et al 2005).

Although most physicians acknowledge the benefits of physical and psychological CAM therapies, the role of nutritional and mineral supplements, particularly when used in conjunction with chemotherapy and radiation therapy, is an issue of considerable controversy.

The Use of Dietary Supplements/Antioxidants by Cancer Patients During Conventional Treatment

In the following section, we summarize key findings from published studies demonstrating that dietary supplements influence clinical outcomes and long-term survival, as opposed to showing only a short-term benefit:

1)Encouraging results from a clinical study have shown that the use of antioxidants during chemotherapy treatment does not compromise the treatment. In this study of lung cancer patients, supplementation with vitamin C, vitamin E, and beta-carotene did not interfere with the effectiveness of chemotherapy (Pathak AK et al 2005). In fact, recipients of chemotherapy who took antioxidants had better response rates and overall survival than those who received chemotherapy alone; however, these differences did not reach statistical significance (Drisko JA et al 2003; Pathak AK et al 2005).

2)In a study of non-small cell lung cancer patients over 60 years of age who had undergone surgery to remove their primary tumor(s), doctors compared survival in vitamin users to nonusers and measured blood folate levels as an indicator of folic acid intake. The average survival of nonusers was only 11 months, compared to 41 months for vitamin users; in other words, supplement users survived almost four times longer than did nonusers. Patients with higher blood folate levels also had improved long term survival (Jatoi A et al 1998). The Mayo Clinic researchers who conducted this study have conducted further studies with larger patient samples, and their results consistently show improved survival and quality of life in non-small cell lung cancer patients who use vitamin and mineral supplements (Jatoi A et al 2005a; Jatoi A et al 2005b).

3)Another study examined a group of transitional cell bladder cancer patients. One group was given BCG (a tuberculosis vaccine) immune-augmentation therapy plus the recommended daily allowance (RDA) of vitamins. The second BCG-treated group (the mega-dose group) received the RDA plus 40,000 IU of vitamin A, 2000 mg of vitamin C, 400 IU of vitamin E, 100 mg of vitamin B6, and 90 mg of zinc. After five years, cancer recurrence rates were 91 percent in the group that received the low-potency RDA vitamins, but only 41 percent in the mega-dose group. In this study, large doses of vitamins resulted in a 55 percent reduction in cancer recurrence (Lamm DL et al 1994).

4)Uveal melanoma is a rare form of melanoma that occurs in the iris of the eye (Tallberg T et al 2000). Nine random high-risk patients with uveal melanoma had standard conventional therapy to eradicate their primary tumors. The patients were then put on a nutritional supplement regimen consisting of folic acid, trace minerals, amino acids, and fatty acids. After 80 months of follow-up, none of the nine patients experienced recurrent disease, compared to a similar group of patients who did not receive these supplements. Given that 100 percent of these high-risk patients were free of disease after almost seven years, the results provide further evidence of the potential value of nutritional supplementation for cancer patients (Tallberg T et al 2000).

5)Studies of breast cancer patients have shown that patients using antioxidants are less likely to suffer a recurrence or die from their cancer (Fleischauer AT et al 2003).

6)The effectiveness of 5-fluorouracil (5-FU), a chemotherapy agent used to treat breast cancer, was improved when it was administered in combination with folic acid (Kreienberg R 1998). 5-FU is also commonly used in colon, liver, and pancreatic cancers, but has not shown a high degree of efficacy (Christopoulou A 2004). A randomized trial of patients with metastatic colorectal carcinoma compared the effects of 5-FU administered alone and in combination with folic acid. Compared to the group receiving 5-FU alone, the patients receiving 5-FU plus folic acid experienced a 76 percent overall tumor reduction. Survival in the group receiving 5-FU plus folic acid was 47 percent greater than in the group receiving 5-FU alone. The addition of folic acid to this chemotherapy drug regimen resulted in an improved therapeutic profile and significantly prolonged survival time (Loffler TM et al 1992).

Advanced cancer patients exhibit a range of defects in their immune capacity that likely contribute to an increased susceptibility to infections and disease progression (Campbell MJ et al 2005). A study of 12 advanced colorectal cancer patients sought to determine whether supplementation with vitamin E could enhance immune function. The patients received a daily dose of 750 mg (<1200 IU) of vitamin E beginning two weeks prior to intervention with chemotherapy or radiation treatment. Short-term supplementation with vitamin E led to increased white blood cell (lymphocyte) counts (CD4:CD8 ratios) and enhanced the lymphocytes’ ability to produce interleukin-2 and IFN-gamma, which are required for the immune system to destroy cancer cells (Malmberg KJ et al 2002).
While all the studies mentioned above (and many others) showed the benefit of dietary supplements for cancer patients simultaneously undergoing conventional medical treatment, some studies have failed to show any benefit or have shown mixed effects from taking nutritional supplements (Lesperance ML et al 2002). In one study, high levels of folic acid supplementation were associated with greater reductions in neutrophils (a type of white blood cell); however, the same study showed that low neutrophil levels caused by chemotherapy could be improved by vitamin E supplements (Branda RF et al 2004). A preponderance of evidence supports the use of antioxidants with conventional cancer treatments (Moss RW 2006). However, cancer patients are advised to consult physicians who are experienced in both conventional cancer treatments and nutritional oncology.

Prescription Antioxidants vs. Natural Antioxidants
Proponents of dietary supplementation for cancer patients argue that the use of supplements containing multiple high-dose antioxidants before and during conventional therapy may improve treatment efficacy by increasing tumor response and decreasing normal tissue toxicity. Conventional therapy produces toxicity during treatment that can be severe enough to cause its discontinuation. Therefore, if dietary supplements can reduce the toxicity to normal cells, or increase the response of tumor cells to conventional therapy, this would represent a significant improvement over current strategies for managing cancer (Moss RW 2006).

Critics argue that antioxidant supplements should not be used with conventional free-radical-generating cancer therapies because they would protect cancer cells from death due to free-radical damage (D'Andrea GM 2005; Labriola D et al 1999). However, synthetic antioxidants available as prescription drugs reduce toxicities associated with conventional treatments. For example, amifostine, a synthetic version of the amino acid cysteine (Mehta MP 1998; Schwartz GN et al 1998), is prescribed by oncologists to reduce the toxicity of conventional treatments without compromising their effectiveness (Mehta MP 1998; Spencer A et al 2005). Mesna, another synthetic antioxidant available as a prescription drug, improves the efficacy of the anti-cancer drug ifosfamide, which would otherwise damage the urinary system (Olver I et al 2005). These prescribed, synthetic antioxidants have been investigated in many randomized, controlled clinical trials of cancer patients (Antman K et al 1993; Komaki R et al 2002).

Naturally occurring antioxidants and enzymes are often depleted in cancer patients undergoing aggressive therapies, leaving the healthy calls defenseless against free-radical damage. Therefore, it could be argued that supplementing with antioxidants does not add something foreign to the body (unless they are synthetic), but instead replaces natural substances lost as a result of treatment (Barber MD 2001; Brown TT et al 2003). Replenishing normal antioxidant levels reduces the adverse side effects associated with chemotherapy and radiation therapy (Mehta MP 1998; Olver I et al 2005), and actually improves patient outcomes (Fleischauer AT et al 2003; Malmberg KJ et al 2002; Park CH 1988; Prasad KN et al 1996). For more information on these studies, please refer to the chapters on Cancer Radiation Therapy and Cancer Chemotherapy.


Physical and Psychological Supportive CAM Therapies

Rehabilitation programs for cancer patients involve a combination of physical and psychological interventions that improve the patient’s physical comfort and ability to function (Pandey M et al 2001; Santiago-Palma J et al 2001). These are thought to alleviate the emotional distress caused by the patient’s loss of mobility and need for self-care (Cheville AL 2005; Fialka-Moser V et al 2003).

Acupuncture improves cancer symptoms and treatment-related side effects such as nausea, pain, hot flashes, and breathlessness (Samuels N 2002). Indeed, the American Cancer Society recommends the use of acupuncture in cancer patients (Samuels N 2002). In a study of the use of acupuncture in cancer patients, as many as 60 percent of patients showed an improvement in their symptoms (Johnstone PA et al 2002).

Hypnosis improves the symptom of hot flashes (Elkins G et al 2004) and overall quality of life by reducing anxiety and insomnia in breast cancer patients (Elkins G et al 2004). Hypnosis is also recommended as an integral part of palliative care (symptom relief) for cancer patients, with a view to reducing pain and shortness of breath (Marcus J et al 2003). In addition, hypnosis improves mental health and overall well-being in cancer patients treated with radiation therapy (Stalpers LJ et al 2005).

Breathing Exercises. A study of cancer patients recovering from stem cell transplantation showed that following a breathing exercise program for six weeks reduced levels of fatigue (Kim SD et al 2005).

Massage and Aromatherapy improve the general psychological health of cancer patients and, in particular, reduce anxiety levels, pain, and nausea (Fellowes D et al 2004). Breast cancer sufferers receiving massage therapy have improved immune system function and feel less depressed and angry about their circumstances (Hernandez-Reif M et al 2005). A combination of aromatherapy, foot soaking, and reflexology improves the fatigue that is often experienced by cancer patients (Kohara H et al 2004).

Yoga Meditation. Kundalini yoga involves a variety of meditation techniques that are effective in alleviating anxiety, fear, anger, and depression (Shannahoff-Khalsa DS 2005). Indeed, this type of yoga helped breast and prostate cancer patients think positively about their cancers (Shannahoff-Khalsa DS 2005).

Humor. Laughing has always been recognized as a good relaxation and coping strategy. Scientific studies have now demonstrated that laughter is able to reduce anxiety and physical discomfort in cancer patients (Christie W et al 2005). Laughter has a beneficial effect on the immune system and improves the function of natural killer cells, which play an important role in counteracting cancer (Bennett MP et al 2003; Berk LS et al 2001; Christie W et al 2005; Takahashi K et al 2001). Laughter is also known to improve pain threshold in cancer patients and to reduce levels of stress hormones (Christie W et al 2005).

Positive Visualization. Adoption of hope-inspiring interventions by cancer care providers is associated with an improvement in patients’ ability to cope with the fear and anxiety associated with a cancer diagnosis (Felder BE 2004; Watts S et al 2004).

Exercise. Various forms of exercise, including Tai Chi Chuan, improve the quality of life of cancer patients (Jones LW et al 2004; Mustian KM et al 2004) recovering from surgery or undergoing treatment. Exercise alleviated fatigue and improved heart and lung function and overall physical well-being (Dimeo FC et al 2004; Kendall AR et al 2005; Mock V et al 2005; Stevinson C et al 2004; Thorsen L et al 2005).

Hydration. Many cancer patients, particularly those with terminal disease, suffer from low levels of body fluids, or dehydration (Dalal S et al 2004). Artificial hydration in these patients improves dehydration symptoms (Bruera E et al 2005) and is also useful in treating chemotherapy-related diarrhea and kidney disease (Polycarpe E et al 2004; Saltz LB 2003). However, artificial hydration should be approached with caution and used according to each patient’s medical condition, as it can also aggravate symptoms associated with water retention, such as edema (Morita T et al 2004; Morita T et al 2005).

What You Have Learned So FarComplementary and alternative therapies (CAM) represent one of the fastest-growing adjunctive cancer treatment modalities in the United States.
The most commonly used CAM modalities include nutritional supplements, mind-body approaches, and acupuncture.
When used properly, nutritional supplementation can enhance the effectiveness of conventional cancer treatments, boost the immune system, and improve the patient’s quality of (and control over) life.
Many cancer patients take supplemental nutrition during cancer treatment to alleviate treatment toxicities and to improve well-being.
Synthetic antioxidants (such as amifostine), available by prescription only, are widely used by both medical and radiation oncologists to control the adverse effects of cancer treatments.


The Importance of Nutrition During Cancer Treatment
The nutritional status of cancer patients is often compromised as a symptom of the cancer or as a side effect of conventional treatment (Usharani K et al 2004). Indeed, a significant number of patients recovering from cancer are malnourished (Guo Y et al 2005) or have suffered considerable weight loss (Colasanto JM et al 2005). The nutritional status of cancer patients has an impact on a variety of important factors, including:

1)Treatment tolerance
2)Survival and overall outcome
3)Immune function
4)Cancer development and progression.
Nutritional intervention as an integral part of cancer treatment can be implemented by eating healthy foods and taking supplements or by administration of enriched formulas through a feeding tube directly into the gastrointestinal tract (enteral) or injection into the veins (parenteral) (Hyltander A et al 2005). Enteral nutrition is always the preferred method of feeding cancer patients when the gastrointestinal tract is functional but the oral route is compromised; parenteral nutrition should be provided only to selected patients, as it is of little benefit to most cancer patients.

However, parenteral nutrition can be administered in the comfort of the patient’s home and improves the long-term survival of patients with incurable advanced disease (Hoda D et al 2005). In particular, this type of artificial feeding can be useful in gynecological and colon cancer patients who often suffer from intestinal tract obstruction (McKinlay AW 2004). In a recent study comparing the different types of nutritional intervention during cancer treatment, normal oral nutrition was superior to enteral and parenteral feeding only when it was supported by nutritional counseling from a dietician (Hyltander A et al 2005).

Treatment Tolerance. Nutritional intervention during cancer treatment may help patients to better tolerate cancer treatment, with less frequent adverse side effects (Bahl M et al 2004; Capra S et al 2001; Read JA et al 2004). In particular, patients with nasopharyngeal cancer, when artificially fed through a tube before treatment, had less weight loss and superior recovery compared to patients who had the nutritional intervention only after treatment (Bahl M et al 2004).

Survival and Overall Outcome. Malnourished cancer patients are more likely to have longer periods of hospitalization, lower survival rates, and a higher frequency of medical complications (Colasanto JM et al 2005; Guo Y et al 2005). A study of stomach cancer patients recently showed that nutritional status affected the patients’ quality of life, and the authors recommended increasing the number of high-protein, high-calorie meals consumed each day as a way to improve nutritional status (Tian J et al 2005).

Studies of colorectal and head and neck cancer patients have shown the beneficial effect of nutrition on survival and quality of life (Ravasco P et al 2005b; Ravasco P et al 2005a). These studies have also highlighted the importance of cancer patients having access to counseling and guidance from a dietician. In fact, these studies showed that regular foods supported by dietary counseling were more beneficial than enriched nutritional supplements taken in the absence of qualified guidance (Ravasco P et al 2005b; Ravasco P et al 2005a).

Immune Function. Impaired nutritional status in cancer patients is associated with reduced numbers of white blood cells (most often neutropenia) and low red blood cell counts, or anemia (Usharani K et al 2004). Administration of a specialized formula enriched with nutrients (including arginine and omega-3 fatty acids) to cancer patients before surgery reduced the occurrence of infections and time spent in the hospital (Moskovitz DN et al 2004). Because of its immunomodulatory properties, arginine helps to restore immune system balance in cancer patients after surgery (Ates E et al 2004); however, further research is necessary to define its role in the nutritional care of cancer patients

Delays in the healing of surgical wounds—or a complete failure of the wounds to heal—often complicates the rehabilitation of malnourished cancer patients after surgery (Farreras N et al 2005). Artificial nutrition of gastric cancer patients after surgery with a formula designed to boost the immune system improves wound healing and recovery (Farreras N et al 2005).

Cancer Development and Progression. A study of patients with high levels of prostate-specific antigen (PSA), a widely accepted indicator of the risk of developing prostate cancer, showed that a diet of low fat and high soybean protein content induced a significant, though temporary, reduction in PSA levels (Tsutsumi M et al 2004).

No comments: